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Abstract-The surface tension gradient driven flow that occurs during laser melting has been studied. The 
vorticitystreamfunction form of the Navier-Stokes equations and the energy equation has been solved by the 
‘Alternative Direction Implicit’method. It has been shown that the inertia forces in the melt strongly influence 
the flow pattern in the melt. The convection in the melt modifies the isotherms in the melt at high surface 
tension Reynolds number and high Prandtl number. The buoyancy driven flow has been shown to be 

negligible compared to the surface tension gradient driven flow in laser melting. 

INTRODUCTION 

LASER surface melting and alloying can be used to 
produce a surface layer with desired properties such as 
wear and corrosion resistance. When a laser beam 
impinges on a surface there can be a large difference in 
the temperature of the surface beneath the centre of the 
laser beam and that beneath the edge of the laser beam. 
This temperature difference along the free surface of the 
molten material causes variation in surface tension 
along the free surface. The variation in surface tension 
along the free surface causes fluid motion which is 
called ‘thermocapillary flow’. Fluid flow during laser 
melting can influence the composition and structure of 
the solidified material. The knowledge of temperature 
and velocity profile in the melt is essential to predict the 
scale and character of the microstructure. 

Mehrabian et al. [l] have reported the relationship 
between microstructure and fluid flow pattern when an 
aluminium<opper alloy was subject to laser melting 
and solidification. A continuous carbon dioxide laser 
with a power density of lo6 W cm-’ was used. A study 
of the microstructure by Mehrabian et al. [l] revealed a 
circular convection pattern just below the melt. 
Structural analysis revealed that vigorous convection 
occurred in the middle of the melt. 

Anthony and Cline [2] have obtained an analytical 
solution of the Navier-Stokes equations in order to 
predict the fluid flow induced by surface tension 
gradients during laser melting. Their analysis assumed 
that the inertia forces are negligible in the melt. The 
results obtained by them indicate, however, that the 
Reynolds number for the flow can be as high as 10,000. 
Hence the neglect of inertia forces by Anthony and 
Cline [2] cannot be justified. If both inertia and viscous 
forces are included in the Navier-Stokes equations it is 
not possible to obtain simple analytical solutions. 
Hence the fluid flow and temperature profiles in the 
melt must be obtained by numerical solution of the 
Navier-Stokes equations and the energy equation. 

In this paper we study the flow pattern and 

temperature variation in a surface tension driven flow 
in a molten cavity. The molten region is assumed to be a 
long, rectangular cavity with the side and bottom walls 
at the melting temperature of the material. The top free 
surface of the material is assumed to have a sinusoidal 
variation of temperature with the maximum tempera- 
ture at the centre and minimum surface temperature at 
the edge (see Fig. 1). The temperature and velocity 
profiles in the melt are obtained by the solution of the 
Navier-Stokes equations and the energy equation by a 
finite-difference method. 

BASIC EQUATIONS 

The flow induced by the surface tension gradient is 
governed by the Navier-Stokes equations. In the 
present problem it is convenient to write these in the 
vorticity-streamfunction form rather than the primi- 
tive form. The Navier-Stokes equations in the primitive 
variables demand the specification of boundary 
conditions on pressure. This is difficult to specify in this 
problem and hence, for cavity flows, the vorticity- 
streamfunction form of these equations is generally 
preferred. The Navier-Stokes equations in the vor- 
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FIG. 1. Coordinate system. 
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NOMENCLATURE 

aspect ratio 
acceleration due to gravity [m s-‘1 
Grashof number 
height of the cavity [m] 
Marangoni number 
surface tension Reynolds number 
time [s] 
temperature [K] 
vertical velocity [m s _ ‘1 
horizontal velocity [m SC’] 
width of the cavity [m] 
vertical coordinate [m] 
horizontal coordinate [ml. 

P dynamic viscosity [kg m-l s-i] 
V kinematic viscosity [m2 s-i] 

surface tension [N m- ‘1 
& streamfunction [m’ s- ‘1 
w vorticity [s- ‘1. 

Subscripts 
centre of the cavity 

; edge of the cavity 
r reference. 

Greek symbols 
thermal diffusivity [mZ s- ‘1 
coefficient of volumetric expansion [K- ‘1 

Superscript 
* nondimensional variable. 

ticity-streamfunction form are (see, for example [3]) 

where 

av au 
W=ax-au 

&T_!i 
ay 

v= -3L 
8X' 

The energy equation can be written as 

The initial conditions are 

t=O, U=V=w=O, T=T, 

(4) 

The boundary conditions are (t > 0) 

U=V=$=O, T=T, 

for 

Y-0,W O<X<H 

X=H O<Y<W 
(5) 

U = 0, $ = 0, T = T,+(T,-TO)sin(nY/W) (6) 

for X = 0,O < Y < W 

av 1 de aT 

w=E=-ji dT aY (->- 

1 

(7) 

for X = 0,O < Y < W. 

The boundary condition at the surface [equation (7)] 
represents the balance between shear stress and surface 
tension gradient at the surface. This boundary 
condition is responsible for the establishment of 
thermocapillary flow in the cavity. The above 
equations and boundary conditions incorporate the 
following assumptions. 

1. The flow is laminar. 
2. The fluid is incompressible. 
3. The free surface of the fluid is flat. 
4. The Boussinesq approximation is valid for 

density variation. 

In the case of thermocapillary flows the conditions 
under which the onset of turbulence occurs is not well 
understood. Hence the assumption that the thermo- 
capillary flow in the cavity is laminar is, at best, a first 
approximation, in the absence of adequate data on the 
onset of turbulence. It is reasonable to assume that the 
fluid is incompressible since the velocities encountered 
in this type of flow are expected to be much lower than 
the sonic velocity in the fluid. The free surface of 
the fluid has been assumed to be flat and this may seem 
to be a drastic assumption. Sen and Davis [4], who 
considered the asymptotic solutions for thermocapil- 
lary flow in a cavity, have shown that this assumption is 
justified if the capillary number is much less than 1. The 
capillary number is defined as Ac/ti where Aa is 
the maximum difference in surface tension and 6 is the 
mean value of surface tension. The capillary number is 
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much less than 1 for most molten metals during laser 
melting. 

The numerical solution of the Navier-Stokes 
equations and energy equation will be easier if we non- 
dimensionalise the independent and dependent 
variables. This will enable us to identify the non- 
dimensional parameters relevant to this problem. We 
choose the non-dimensional variables as 

X* =X/H, Y* = Y/W, T* = (T-T,)/(T,-To), 

A = HJW, U* = U/U,A, V* = V/U,, 

t* = tUJW, I,F = $/U,W and w* = wW/U,. 

The manner in which the variables X, Y and T have 
been made non-dimensional should need no expla- 
nation. The choice of reference velocity U, for non- 
dimensionalising U, V, t, w and tj needs careful thought. 
We do not have, at this stage, any idea of the magnitude 
of the velocities in the melt. We know, however, that the 
flow is driven primarily by the shear stress induced at 
the surface by the surface tension gradient. The shear 
stress boundary condition, at the surface, can be used to 
obtain an estimate of the order of magnitude of the 
velocity in the melt. Let us assume that the 
characteristic velocity in the melt is U, and use this to 
non-dimensionalise the velocity in the shear stress 
boundary condition at the interface 

aV* 1 da (T,-T,)H aT* _=__ - 
ax* U, dT W ay*; ( > 

x* = 0, 0 < Y* < 1. 

Ifweassumethat U, = -(da/dT) [(T,- T,)H/pIV’l,the 
non-dimensional boundary condition at the interface 
becomes 

av* aT* 
-=-; 
ax* aY* 

x* = 0, 0 < Y* < 1. 

The above form of the boundary condition implies that 
shear stress and surface tension gradient are in balance 
at the interface. If we had not assumed U, to be in the 
above form, a parameter would have appeared in the 
shear stress boundary condition. If this parameter had 
very small or very large values it would make one term 
in the above boundary condition much larger than the 
other. This would have made the shear stress boundary 
condition at the interface take a trivial form. Since 
thermocapillary flow is driven by the shear stress at the 
surface we cannot let this boundary condition take a 
trivial form. 

The non-dimensional form of the Navier-Stokes 
equations and energy equation can now be written as 

ad 
=+u*g+v*g 

w* = _ i av* + w* 
A2 ax*2 aY*2 (9) 

aT* t+u*g+v*g 
1 

[ 

a2T* 

= R,Pr 
- l aZT* . (10) 
aY*2 + A2 ax*2 1 

Initial conditions 

t* = 0, T* = U* = V* = a* = $* = 0 

Boundary conditions (t* >, 0) 

y*=o,1 o<x*<1 
U*=I/*=$*=T*=O; x*=l 

o<y*<1 

(12) 
u* = v* = 0 

T* = sin KY* 
x*=0, o<y*<1 (13) 

w* = aT*/aY*; x* = 0, 0 < Y* < 1. (14) 

From the above equations we see that there are four 
non-dimensional parameters in the study of thermo- 
capillary flow in a cavity. They are : 

1. Aspect ratio, A = H/W. 
2. Surface tension Reynolds number R, = U, W/v. 
3. Grashof number, Gr = g#?(T,- To) W3/u2. 
4. Prandtl number Pr = v/u. 

The product R, Pr is also known as the Marangoni 
number. The ratio Gr/Rz determines the importance of 
the buoyancy driven flow as compared to the surface 
tension driven flow in the cavity. For a typical laser 
melting problem W = L = 0.001 m and T, - To = 200 
K. For molten iron, du/dT = -0.0004 N m-l K-r, 
/?=0.001K-1,~=0.008kgm-1s-1,v=10-6m2s-1, 
a = 10m5 m2 s- ‘. Hence for laser melting of iron, 
R, = 10,000 while Gr = 1960. Therefore Gr/Rz is 
equal to 1.96 x 10m5. We can, therefore, neglect the 
buoyancy driven flow as compared to the surface ten- 
sion driven flow in laser melting. 

NUMERICAL SCHEME 

The standard finite-difference technique for the 
numerical solution of the vorticity equation and the 
energy equation is the Alternative Direction Implicit 
(ADI) scheme. The central-difference scheme was used 
for all space derivatives. The use of the central- 
difference scheme for the convective terms in the 
vorticity and energy equation resulted in very slow 
convergence of the vorticity equation (or the energy 
equation) for surface tension Reynolds number (or 
Marangoni number) above 1750. Hence we used the 
upwind-difference scheme for the convective terms in 
the vorticity equation and the energy equation. We 
used the second upwind-difference scheme which has 
been shown to be superior to the first upwind-difference 
scheme by Torrance [S]. For the solution of the 
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vorticity equation the values of the vorticity at the wall 
are required. The wall vorticities are obtained by 
expanding the streamfunction in a Taylor series. We 
can then obtain the wall vorticities as follows (see 
Roache [6] for further details) 

where the subscripts w and w + 1 denote the grid points 
at the wall and close to the wall respectively, and Aw 
denotes grid spacing. The equation relating stream- 
function to vorticity [equation (9)] was solved by the 
successive over-relaxation method. The optimum value 
ofthe relaxation parameter was 1.58. If the primary aim 
is to study the steady-state solution, rapid convergence 
to steady state can be obtained by employing an 
interior loop while solving the vorticity equation 
[equation (S)] and streamfunction equation [equation 
(9)]. The solution of the finite-difference form of the 
vorticity equation gives the value of vorticity at interior 
points for the specified value of wall vorticity [from 
equation (15)]. The new values of vorticity at interior 
points can now be used to find the new value of the 
streamfunction by solving the finite-difference form of 
the streamfunction equation [equation (9)]. The new 
value of streamfunctions at the interior points enable us 
to obtain the new value of wall vorticities through 
equation (15). The vorticity equation is now solved with 
the new value of wall vorticity. The entire cycle is 
repeated many times till the streamfunction remains 
unchanged to within 0.1%. This approach is discussed 
in more detail by ,Szekely and Todd [7]. The finite- 
difference form of the energy equation is now solved 
using the accurate value of streamfunction obtained 
from the previous step. The most commonly used 
method for ascertaining whether steady state has been 
reached is the relative error criterion. 

p?.+ 1 - p?. 
max ” I I lJ < E, PYj # 0 

id PYj 

where Pyj is any variable, such as velocity, vorticity, or 
temperature at the grid point i, j and time level n. This 
method of ascertaining the steady state can give 
misleading results if the time step chosen for marching 
is very small. A more reliable method is to compare the 
transient term in the vorticity (or energy) equation with 
other terms in that equation. When the transient termis 
less than 1% of the most significant term in that 
equation we can confidently claim that steady state has 
been reached. 

The use of an upwind-differencing scheme for 
convective terms contributes to artificial viscosity. The 
contribution made by artificial viscosity can be reduced 
by using a smaller grid size. We found that a 41 x 41 grid 
was essential to reduce the contribution of artificial 
viscosity and obtain an accurate solution. For surface 
tension Reynolds number in the range 10&15,000(and 
41 x 41 grid) we found that the time step that can be 

chosen without encountering instability was 

At* < 0.0008 R, for R, > Ma 

At* < 0.0008Ma for R, < Ma. 

If R, is greater than Ma the stability of the numerical 
scheme is governed by the vorticity equation while for 
R, less than Ma the stability of the numerical scheme is 
governed by the energy equation. Hence the stability 
criteria given above is different for R, greater than Ma 
and R, less than Ma. The stability criteria given above is 
for a square cavity. For a rectangular cavity with aspect 
ratio greater than one the stability criteria is somewhat 
more stringent (for an equal number of grid points in 
the X- and Y-directions). The new stability criteria are 

At* < 0.0008 R,IA, R, > Ma 

At* < 0.0008 Ma/A, R, < Ma. 

To obtain a steady-state solution for a square cavity 
with R, = 10,000, Pr = 1 and a 41 x 41 grid it took 
8 min of CPU time on DEC-10 computer. 

RESULTS 

A study of the pattern of streamlines and isotherms 
for various values of surface tension Reynolds number 
and Prandtl number should reveal the nature of 
thermocapillary flow during laser melting. We will 
confine our discussion primarily to the results obtained 
in the steady state. We will first consider the results 
obtained for the square cavity. In Fig. 2 we see the 
streamline pattern for surface tension Reynolds 
numbers of 400, 2000 and 10,000, respectively. When 
the surface tension Reynolds number is 400 one big cell 
fills the left half of the cavity. On account of the 
symmetry in the cavity it is sufficient to show one half of 
thecavity ;in Figs. 2-8 thelefthalfofthecavityisshown. 
When the surface tension Reynolds number reaches 
2OOOa small secondary cell begins to form at the bottom 
left corner of the cavity. When the surface tension 
Reynolds number is 10,000 the secondary cell becomes 
comparable to the primary cell at the top of the cavity. 
Although there is a dramatic change in the flow pattern 
as R, is increased from 400 to 10,000, there is no 
substantial change in the thickness of the surface layer. 
The surface layer is defined here as the layer near the 
interface which moves in the same direction as the fluid 
at the interface. In the present case, the fluid particle at 
the interface moves from the centre to the edge of the 
cavity. From Fig. 2 we infer that the thickness of the 
surface layer is almost constant as the surface tension 
Reynolds number increases from 400 to 10,000. This 
interesting feature of thermocapillary flow will be 
discussed in more detail a little later. In Fig. 3 the 
isotherm pattern is shown for a fluid with Prandtl 
number equal to 1 and for surface tension Reynolds 
numbers 400, 2000 and 10,000, respectively. When 
the surface tension Reynolds number is 400 the 
temperature profile in the cavity is governed by 
conduction and convection plays a minor role. As the 
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1.1 1.1 -i 

FIG. 2. Streamlines for a square cavity for various surface tension Reynolds numbers : (a) 400, (b) 2000, (c) 
10,ooo. 

surface tension Reynolds number increases to 2000 Figure 4 shows the isotherms for a fluid with a Prandtl 

convection begins to show its presence by modifying number equal to 10 (typical of non-metals like silicon) 

the isotherms near the left wall of the cavity. At a and surface tension Reynolds numbers of 400,200O and 
Reynolds number of 10,000 convection influences the 10,000 respectively. We find that convection begins to 

isotherms dramatically. The high velocity at the influence the isotherm pattern even when the surface 

interface induces a large downward flow near the left tension Reynolds number is as low as 400. When the 
wall of the cavity and hence the convection modifies the surface tension Reynolds number is 10,000 we find that 
isotherms dramatically near the left wall of the cavity. most of the temperature variation occurs near the 

(0) 
1.0 

1.5 

c) 

1.5 

FIG. 3. Isotherms for a square cavity with Pr = 1, for various surface tension Reynolds numbers : (a) 400, (b) 
2oo0, (c) 10,ooo. 
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' 1.0 1 

FIG. 4. Isotherms for a square cavity with Pr = 10 for various surface tension Reynolds numbers: (a) 400, (b) 
2oo0, (c) 10,ooo. 

interface within a thin thermal boundary layer. Figure 5 
shows the isotherms for a fluid with Prandtl number 

isotherms, there is a discernable upward displacement 

equal to 0.1 (typical of molten metals like iron) and 
of isotherms as the surface tension Reynolds number 
increases from 400 to 10,000. The role of convection is 

surface tension Reynolds number equal to 400, 2000 
and 10,000, respectively. In this case we find that 

more clearly displayed in Fig. 6. Here we compare the 

convection plays a relatively minor role and the 
isotherms obtained by neglecting convection (right 

isotherm pattern reflects the dominance of conduction. 
panel) with that obtained by including convection (left 
panel) for a surface tension Reynolds number of 10,000 

Although convection does not modify the shape of the and a Prandtl number equal to 1. We observe that the 

1. 
0) 

I 

I 1.c 

l- 

( b) 

I 
FIG. 5. Isotherms for a square cavity with Pr = 0.1 for various surface tension Reynolds numbers: (a) 400, (b) 

2000, (c) 10,000. 
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lb) 

FIG. 6. Comparison of isotherm with convection for 
R, = 10,000 and Pr = 0.1 (a) and without convection (b). 

isotherms are flatter when convection is included and 
the isotherms are displaced upwards. Hsu etai. [a] have 
presented a two-dimensional model for predicting the 
heat transfer and temperature profiles during laser 
melting and solidification. They assumed that the heat 
transfer in the melt was by conduction only. The present 
work shows clearly that we cannot neglect the role of 
convection while calculating the heat transfer and 
temperature profiles in the melt. 

We have so far looked at the isotherms and 
streamlines for a square cavity for a range of surface 
tension Reynalds numbers and Prandtl numbers. In 
Fig. 7, the streamline and isotherm patterns are shown 
for a rectangular cavity with aspect ratio equal to 0.2. 
We observe once more that the surface layer is thin and 
in thiscaseconfined to the top third ofthecavity.In Fig. 
8 the streamline and isotherm pattern are shown for a 
rectangular cavity with aspect ratio equal to 5. In this 

FIG. 7. Streamlines and isotherms for a rectangular cavity with 
aspect ratio equal to 0.2 with R, = 2000 and Pr = 0.1. 

(of 

.5 f 

1.0 

0.10 

0.02 

0.008 

0.00002 

1.1 
tb) 

FIG. 8. Streamlines and isotherms for a rectangular cavity with 
aspect ratio equal to 5.0 with R = 2000 and Pr = 0.1. 

case the surface layer is extremely thin and most of the 
deep cavity is a ‘dead zone’ with very slow moving tluid 
particles. 

In the present paper, we have assumed that the 
presence of laser results in a sinusoidal variation of 
temperature at the surface. The actual situation is much 
more complicated on account of the spatial variation 
of radiation across the laser beam and the spatial 
variation in the absorptivity of the surface of the molten 
material and the spatial variation in the heat loss from 
the surface. In Fig. 9 the spatial variation of non- 
dimensional heat flux along the surface is shown. We 
conclude that a sinusoidal variation of surface 
temperature implies a similar variation of heat flux 
when the surface tension Reynolds number is 100. At a 
surface tension Reynolds number of 1000, a sinusoidal 
variation of surface temperature implies a heat flux 
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FIG. 9. Heat flux variation along the free surface. 

variation which is more Gaussian-like. At a surface 
tension Reynolds number of 10,000, a sinusoidal 
variation of surface temperature implies regions of 
negative heat flux near the edge of the cavity. This is not 
unrealistic if the amount of laser energy absorbed near 
the edge of the cavity is less than the energy lost by 
convection and radiation. In Fig. 10 the variation of 
horizontal velocity (non-dimensionalised with respect 
to the horizontal velocity at the surface) with depth is 
shown for three different surface tension Reynolds 
numbers. We find that the shape of the horizontal 
velocity profile is very similar even though the surface 
tension Reynolds numbers range from 100 to 10,000. 
We discover also that the point at which velocity 
changes sign is almost the same. In other words the 
thickness of the surface layer is almost constant. This 
remarkable result could be useful for analysts who 
would like to obtain approximate analytical solutions 
for thermocapillary flow in a cavity. An approximate 
analytical solution will be very useful for reduction of 
computation time because 90% of the total CPU time 

v (xl -- 
V(X.Ol 

0.4 0.2 0 - 0.2 -0.4 -0.6 -0.8 -1.0 - 

0 Rr =mo.c 
0 RTJ.,WXIO 
AR~=lmO 
Y zO.2 

FIG. 10. Horizontal velocity profiles for various surface tension 
Reynolds numbers. 

(required to obtain the solution of Navier-Stokes 
equations and energy equation) is utilised for the 
solution of vorticity equation and streamfunction 
equation. 

In Fig. 11 the variation of the maximum horizontal 
velocity in a square cavity is shown as a function of 
surface tension Reynolds number. In order to bring out 
the role of surface tension Reynolds number explicitly 
the non-dimensional horizontal velocity has been 
defined somewhat differently. We observe that at low 
surface tension Reynolds number the maximum 
horizontal velocity increases linearly with the surface 
tension Reynolds number while at high surface tension 
Reynolds number the maximum horizontal velocity 

FIG. 11. Variation of non-dimensional maximum horizontal 
velocity profile as a function of surface tension Reynolds 

number. 
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40- 

20- 

cavity during laser melting can be solved by standard 
finite-difference techniques. The results presented in 
this paper show that the inertia forces are dominant in 
the momentum equations and convective terms are 
important in the energy equation. The thickness of 
the surface layer is almost constant irrespective of the 
value of the surface tension Reynolds number. The 
temperature field is strongly influenced by convection if 
the surface tension Reynolds number is large or the 
fluid has high Prandtl number. The buoyancy driven 
flow is negligible compared to the thermocapillary flow 

in the conditions normally encountered in laser 
melting. 
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FIG. 12. Increase of non-dimensional maximum horizontal Development Organisation, Delhi. 
velocity with time. 

varies as the surface tension Reynolds number to the 
power of two-thirds. Ostrach [S] had predicted this 
trend, by using dimensional analysis, for thermo- 
capillary flow during crystal growth. In Fig. 12 the time 
taken for the thermocapillary flow in a square cavity to 
attain the steady state is shown. We can conclude from 
this figure that when the surface tension Reynolds 
number is 2000, the maximum horizontal velocity 
reaches 90% of its steady-state value when the non- 
dimensional time is 20. For laser melting of iron (with 
W = L = 0.001 m and T,-- T, = 200 K) this implies 
that steady state is reached in a time of 10 ms. If the laser 
scan speed is 1 cm s- ‘, the fluid flow pattern attains a 
steady state while the laser moves by only 0.01 mm and 
hence a quasi-steady-state approximation may be 
appropriate. 

CONCLUSIONS 

The basic conservation equations of momentum and 
energy which govern the thermocapillary flow in a 
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UNE ETUDE NUMERIQUE DE L’ECOULEMENT THERMOCAPILLAIRE DANS UNE 
CAVITE RECTANGULAIRE PENDANT LA FUSION PAR LASER 

R&nnnC-On Btudie l’ecoulement cr& par le gradient de tension superficielle qui existe pendant une fusion 
laser. Les equations de Navier-Stokes et d’bnergie exprimees a l’aide de fonction de courant-tourbillon sont 
resolues par la methode “implicite a directions alternbes”. On montre que les forces d’inertie dans le bain 
influence fortement la configuration de l’ecoulement dans le bain. La convection modifie les isothermes dans le 
bain pour un grand nombre de Reynolds de tension de surface et un grand nombre de Prandtl. L’ecoulement 
sous l’effet de la pesanteur est trouvb nbgligeable en comparaison de celui relatif au gradient de tension 

superficielle dans la fusion par laser. 
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NUMERISCHE UNTERSUCHUNG DER OBERFLACHENSPANNUNGSGETRIEBENEN 
STRGMUNG IN EINEM RECHTECKIGEN HOHLRAUM WAHREND DES SCHMELZENS 

MIT LASER 

Zusanunenfamung-Die Stromung aufgrund des Gradienten der Oberlliichenspannung, wie sie beim 
Schmelzen mit Laser entsteht, wurde numerisch untersucht. Die Navier-Stokes-Gleichungen und die 
Energiegleichung wurden in die Form von Wirbeltransport- und Stromfunktion gebracht und mit Hilfe der 
ADI-Methode gel&t. Es wird gezeigt, da5 die Trlgheitskrafte in der Schmelze das Striimungsbild stark 
beeinflussen. Die Konvektion in der Schmelze lndert die Isothermen bei hoher Obetllachenspannungs- 
Reynolds-Zahl und hoher Prandtl-Zahl. Die Stromung aufgrund von Auftriebskraften ist im Vergleich zur 

Strijmung aufgrund des Gradienten der Obertlachenspannung vernachliissigbar. 

YMCJIEHHOE HCCJIE~OBAHMETEPMOKAI-IHJI~JIPHOFOTE~EHHX B 
HPRMOYI-OJIbHOH I-IOJ-IOCTM HP&i I-IJIABJIEHMH I-IOA AEHCTBMEM JIA3EPHOF0 

H3JIY’IEHHX 

&tIOTaqtIH-kiCCJIenyeTCx TeYeHkie, Bbl3BaHHOe rpameHToM nosepXHoCTaoro HaTmceHm3 npa nnaane- 

HUB IIOn LIekTLGieM Jla3epHOrO H3JIyYeHWi. HexBHbIM MeTOnOM IIepeMeHHbIX HanpaBJleHHti pelUeHbI 

YpaBHeHHR HaBbe-CTOKCa II 3HeprliH. nOKa3aH0, 'iT0 CIiJtbl HHepUSiH B paCllJIi?BC OKa3bIBatOT CHJibHOe 

BnliRHHe Ha peXUiM Te'ieHI111. KOHBeKUHn B paCnJlaBe np&iBO!WT K ki3MeHeHBlO H30TepM npu 6onbmux 
YACnaX PetiHO,IbL,Ca &"ll nOBepXHOCTHOr0 HBTII~KCHUII B 6onbwex YACnaX npaHATn,L nOKa3aH0, YTO 

TeSeHBe, BbI3BaHHOe I,OAl&MHOti CHJIOii, npeHe6penaMo Ma,,0 II0 CpaBHeHAH) C TeSeHHeM, EbI3BaHHbIM 


